
EVALUATING GRAPH THEORETIC CLUSTERING ALGORITHMS FOR
RELIABLE MULTICASTING

Esther Jenningsy
Jet Propulsion Laboratory

4800 Oak Grove Drive,

Pasadena, California,91109, USA.

Lenka Motyčková, David Carr
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Luleå, SWEDEN.

Abstract—In reliable multicast protocols, each data packet be-
ing sent must be acknowledged. Collecting the acknowledgments
centrally at the sources can cause ACK-implosion and can result
in poor scalability. To overcome this, clustering algorithms which
use virtual structures to gather acknowledgments were proposed.
In this work, we analyze the complexities of three such clustering
algorithms: Lorax, k-degree, and Self-adjust. We compare the
quality of the virtual structures produced by these algorithms,
focusing on the number of clusters, cluster size, cluster radius,
and the optimal positioning of cluster leaders. Our simulation
showed that the virtual structure produced by Self-adjust is bet-
ter in terms of cluster radius and the location of cluster lead-
ers. However, due to the self-adjusting nature of the algorithm, it
might take longer time to compute than the other two algorithms.

I. I NTRODUCTION

With the growing size of the Internet, as well as the grow-
ing interest in multicast applications, we can expect large mul-
ticast groups and groups that span a large geographical area.
The routers in the Internet are responsible for routing multi-
cast packets. Thus, the growth of multicast groups usually in-
creases the load of all the intermediate routers and may cause
an overload on routers. To avoid overload, multicast protocols
must be scalable, i.e., the network load must be independent of
the number of receivers in a multicast group. In reliable group
multicast, each packet being sent must be acknowledged to
ensure that the packet has been received by all the multicast
group members. Collecting the acknowledgments centrally at
the sources can cause ACK-implosion and can result in poor
scalability. To overcome this, several clustering algorithms
were proposed which use virtual structures to gather acknowl-
edgments. These virtual structures might contain intercon-
nected disjoint clusters, or a multi-level hierarchy of overlap-
ping clusters.

Clustering algorithms have been studied extensively since
the 1970’s [1], [2]. With the recent interest in data mining
and computational biology, there is a new wave of clustering
algorithms being proposed [3], [4], [5], [6]. Some of these al-
gorithms use graph theoretical techniques to partition an input
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graph into disjoint clusters. This is very similar to the cluster-
ing technique being used in distributed computing to achieve
concurrency and scalability.

In distributed computing, a clustering algorithm would par-
tition the graph into local groups according to thelocal con-
nectivity propertiesof the graph. Applying this technique
recursively, we can obtain a hierarchical clustering where a
higher-level cluster can contain several lower-level clusters.
Using this hierarchy, one can minimize the amount of com-
munication by performing computations as much as possible
locally and sending only aggregated data globally, where the
aggregated data is a summary representing all the data in a
cluster.

Since reliable multicast services are being used increasingly
to support real-time applications, it becomes necessary to un-
derstand the strengths and weaknesses of the virtual structures
produced by the previously proposed clustering algorithms.
The quality of these structures may directly affect the perfor-
mance of reliable multicast protocols which use these struc-
tures to gather acknowledgments.

In recent years, several clustering algorithms have been pro-
posed [7], [8], [9], [10], [11]. The algorithms proposed in [7],
[10], [11] produce a clustering, which reflects the local con-
nectivity properties of the network (or multicast group) topol-
ogy. The algorithms proposed by [8], [9] produce a cluster-
ing which does not necessarily preserve the local connectivity
properties. That is, a real cluster (densely connected subgraph)
can be cut into several pieces, where each piece ends up in a
different cluster.

In these previous works, performance was evaluated in
terms of network throughput only. The virtual structures were
integrated into reliable multicast protocols and performance
was evaluated by analysis and simulation. In [7], [8], [9],
[10], [11], the throughput was analyzed in terms of the load per
node, which is bounded by a constant. Thus, the throughput
alone does not tell us how the virtual structures produced by
the different clustering algorithms compare against each other.
Without looking at the properties of the virtual structures, we
gain no insight about how these properties may affect the per-
formance of reliable multicast protocols.

This work compares, by simulation, the virtual structures
produced by three selected clustering algorithms:Lorax, k-



degreeand Self-adjustclustering. To evaluate the quality
of the virtual structures, We focus on the following metric:
(1) number of clusters: affects the load at the source(s); (2)
cluster size: affects the load of the cluster leader; (3) clus-
ter radius: affects the delay within the cluster; and (4) opti-
mality: accesses the placement of a leader in relation to its
cluster members with respect to a tree structure. The leader
position can have an effect on the retransmission delay. If
an acknowledgment-tree (Ack-tree) is used for gathering ac-
knowledgments, the Ack-tree achieves best performance if the
cluster leaders are also the ancestors of their respective cluster
nodes in the multicast delivery tree. In this measure, we count
the number of cluster members which are not descendents of
the cluster leader in the multicast tree.

II. M ULTICAST GROUP MODELING

We model the network as a graph containing routers only,
because the receivers are directly connected to the routers as
peripheral trees. We assume the existence of multicast tree(s)
for the routing of multicast data. The cluster structure pro-
duced by the clustering algorithms are used to collect acknowl-
edgments for the multicast packets.

Given an underlying shared multicast tree, graphG is de-
fined as the (connected) subgraph of the network, induced by
the vertices of the underlying multicast routing tree(s). Note
that,G contains all the vertices of the multicast routing tree(s)
plus all other IP-network connections induced by these ver-
tices.

III. A NALYSIS OF ALGORITHMS

We focus on graph theoretic clustering algorithms which
are suited for distributed computation using only local infor-
mation. For example, graph theoretic clustering algorithms
which compute minimum cuts are not suitable for distributed
computing because two edges belonging to the same cut may
be very far away from each other, and they might not share any
common end-points. Thus, one cannot compute the cuts from
local information only.

In RMTP receivers are grouped into local regions. There is
a designated receiver (DR) in each region to assist the sender
to process acknowledgments and to retransmit data. However,
we did not simulate the RMTP clustering because we do not
know how to implement the selection of DRs in order to make
a fair comparison.

In [7], a greedy algorithm which forms clusters of cliques
(fully connected graphs) was presented. Packets are routed
over shortest paths between boundary nodes in cliques. We
did not simulate this algorithm because the Internet tends to
be sparse, so the clique size is usually small. Therefore, this
type of clustering does not help in decreasing the load of the
routers by much.

Before we present the three selected algorithms, a few ter-
minologies are need. The time complexity is estimated by as-
suming that each message takesO(1) time to transmit; this
does not imply that the algorithms are synchronous. The

messages are short because each message contains a constant
number of parameters. The message complexity estimates the
number of messages exchanged in the algorithms for cluster-
ing. Table I summarizes the complexities of the simulated al-
gorithms, wherem andn are the number of edges and the
number of nodes of an input graphG respectively. The
 in
the table denotes the lower bound on time or messages with
respect to each algorithm. The analysis of the algorithms are
presented in Section III.

TABLE I

ALGORITHM COMPLEXITIES

Complexity Lorax k-degree Self-adjust

Time 
(logB n) 
(k �Dmax) 
(logk n)
Message 
(m) 
(m) 
(m)

A. Lorax Algorithm

This algorithm [8] first constructs a shared Ack-tree starting
from a specific root node. The Ack-tree is constructed using
both root-based and off-tree based schemes. The algorithm
is root-based because the Ack-tree is grown from a specific-
selected root using the expanded ring search (ERS) heuris-
tic. The ERS is controlled by a time-to-live (TTL) parameter
which is a hop-count. That is, the ERS will only reach nodes
within TTL hops. The root-based ERS alone does not guaran-
tee that all the receivers wanting to receive reliable multicast
packets will be reached. This can happen if many nodes be-
tween the root and the receivers are uninterested in getting re-
liable multicast packets. Therefore, we need the off-tree based
scheme where a receiver can initiate an ERS to find nodes on
the Ack-tree, and to attach itself to the Ack-tree through one
of these nodes.

Clusters are formed by grouping a node with at mostB

of its children, whereB is a parameter. A child is any node
which can be reached within a pre-specified delay. Each node
may have a different parameterB. The node and its (at most
B) children form a local group. If a node has more thanB

children, it will abandon the extra children. The process of
keeping the number of children at or belowB at each node is
calledfission. The abandoned children become orphans. If the
orphans were to look for new parents using the ERS heuris-
tics, this may cause an non-scalable amount of work for some
nodes. Therefore, the node which abandons children will look
among its remaining children to find the node (sayv) which
has the least number of children. The node will askv to initiate
an adoption request. Hopefully, this node is also close to the
orphans. The adoption request is sent tov’s local group, hop-
ing to get responses from the orphans. By this fission process,
the clusters formed might not be topology preserving. That
is, a node might need to pass another cluster to reach other
nodes in the same cluster. This affects the retransmission; if
the cluster leader is not an ancestor of the node requesting re-



transmission, the request might be propagated to the root of
the ACK-tree, making retransmissions non-local.
Time complexity: assume the input graph is a tree where each
node hasB children within distance one. The virtual struc-
ture will then havelogB n layers, thus the time complexity of

(log

B
n).

Message complexity: assume a predefined root starts the al-
gorithm. The clusters are formed during an ERS to reach
nodes at the next layer. Since we assume each node hasB

children at distance one, a node starting to grow a cluster will
finish within constant time. The number of messages sent on
each link to form clusters is bounded by a constant. Thus, the
message complexity is
(m).

B. k-degree Algorithm

The algorithm is given two parameters,k, andDmax, where
k is a guess of the highest node degree, andDmax bounds the
cluster radius. The algorithm detects nodes of degree at leastk

(having at leastk neighbors) and builds a cluster around each
such node. The clusters are built concurrently, so they may
compete for members. Starting from a node (of degree� k),
nodes are added to the cluster layer by layer. Let the number
of nodes in the current layer bejlayercurrentj. If there arek�
jlayercurrentj available nodes in the next layer, and the cluster
radius has not reachedDmax yet, then the cluster continues
its growth by including the available nodes in the next layer.
Otherwise, it stops at the current layer. The algorithm then
decreasesk by one, and repeats the cluster building process,
until k = 3. After this, the remaining nodes not belonging to
any clusters must belong to a chain. Chains are then divided
among their closest clusters.
Time complexity: assume all nodes have degreek. Each clus-
ter takes
(Dmax) to create, and the clusters are formed con-
currently. The process is repeated for degree(k � 1), (k� 2),
� � �, 3. This totals to
((k�3) �Dmax) time. No synchroniza-
tion is needed between passes because a timeout can be used
to start the next pass. IfDmax is log

k
n, and all nodes have

degreek, then the time complexity would be
(logk n).
Message complexity: the algorithm makes(k � 3) passes to
grow clusters around nodes of degreek; (k�1); (k�2); � � � ; 3.
In each pass, the nodes not belonging to a cluster yet which
satisfies the degree requirement will start growing its cluster.
The nodes already belonging to clusters do not exchange mes-
sages. When forming a cluster, the nodes involved exchange a
constant number of messages on each edge. Thus, the message
complexity is
(m).

C. Self-adjust Algorithm

Assume a tree is given; this tree can be a multicast tree or
the ACK-tree of [8]. Starting from the root, the root becomes
active, and becomes the root of the first cluster. Then the ac-
tive nodes advertise within a predefined distance,Dact, to ask
other nodes to join its cluster. If it does not hear any reply
from any node wanting to join its cluster, then it will advertise
again; this timedoublingthe distanceDact (as long asDact is

less than the maximum distanceDmax). Dmax is a guess on
the maximum radius of the given tree. A parameter,Kmax, is
used to limit the number of replies (similar toB in theLorax
algorithm).

If an advertising node receives too many replies (that is, ex-
ceedingKmax) from distinct nodes wanting to join its cluster,
then it checks whetherDact can behalved. If so, the node will
reject all the nodes wanting to join its cluster, decreaseDact to
half of the old value, and advertise again. However, when the
number of replying nodes is acceptable, the new leader starts
the second level clusters within the radius where too many
nodes first replied.

If Dact is one and a node receives more thanKmax replies,
then it is assumed that the node is capable of handling all re-
plying nodes. So, it accepts all nodes.

If a node has replied to a potential leader and it is waiting
for a reply, or if it is advertising to be a leader, then it does not
forward advertisements from other potential cluster leaders. In
this way, nodes on the edge of each cluster will block interior
nodes from becoming leaders.
Time complexity: assume all nodes have degreek, then the
time complexity would be
(logk n).
Message complexity: since we assume each node has degree
k, the algorithm will create clusters successfully by exchang-
ing a constant number of messages on each edge. Thus, the
message complexity is
(m).

IV. SIMULATION

For our simulation, we generate input graphs that have
Internet-like topologies by using Tiers (version 1.2)[12]. The
same graphs are used for all three algorithms. We run the sim-
ulation using Java version 1.2 on a Sun Sparc station. Each
topology is a graphG representing a multicast group. We
could regardG as the connected subgraph of a network, in-
duced by the vertices of predefined multicast routing tree(s).

The goal of a good clustering algorithm is to obtain a bal-
anced clustering structure (dependent on the topology of the
multicast groups in the network). The structure should enable
different clusters to process acknowledgments concurrently,
and to localize retransmissions. That is, when a packet is
missed at a node, the lost packet will be obtained from another
node which resides in the same cluster or at a nearby cluster
whenever possible. The simulation assumes: (a) all links have
equal delays, (b) no messages are lost, and (c) all nodes have
equal response times.

We generate topologies containing 5 MANs (60 and 110
routers), 10 MANs (115 and 215 routers), 20 MANs (225 and
425 routers), 50 MANs (570 and 1070 routers), 100 MANs
(1350 and 3150 routers), 200 MANs (2700 routers). Table II
summarizes the parameters used to generate the input graphs.
In the table,nR is the number of router nodes,nMAN is
the number of MANs,nLAN is the number of LANs per
MAN, wBone is the number of back-bone nodes connecting
the MANs to the WAN, andmBone is the number of nodes
connecting the LANs to MANs. The redundancy parameter in



the WAN is set to three for all input graphs because we want to
generate graphs that are more connected than trees. All other
redundancy parameters are set to one.

TABLE II

TOPOLOGYGENERATION PARAMETERS

Graph nR nMAN nLAN wBone mBone

G1 60 5 5 10 5
G2 110 5 10 10 10
G3 115 10 5 15 5
G4 215 10 10 15 10
G5 225 20 5 25 5
G6 425 20 10 25 10
G7 570 50 5 70 5
G8 1070 50 10 70 10
G9 1350 100 5 150 7
G10 3150 100 10 150 20
G11 2700 200 5 300 7

When running the simulation, the following parameters are
used for all the runs:Dinit = 4 (this is the initial value of
Dact), Dmax = 10 (a guess of the maximum radius of the
tree, and by thed-degree algorithm to bound the radius of a
cluster),Bmax = 6 (the maximum number of children within a
fixed distance, used byLorax), dLim = 6 (used ask in thek-
degree algorithm). When simulatingLoraxand theSelf-adjust
algorithms, if the graph hasn nodes, we maken runs. In each
run, a different node is used as the root to start the algorithm.

V. RESULTS

From the simulation, we observe the following:
� cluster number: k-degreeproduced least number of clus-
ters;Self-adjustproduced the most number of clusters. Fig. 1
shows the number of clusters generated by the algorithms. On
the horizontal axis are the input graphsG1 to G11, whereG1

has the smallest number of MANs andG11 the largest number
of MANs. The vertical axis is used for the average number
of clusters over all simulation runs. In all three algorithms,
the number of clusters increases as the number of MANs in-
creases. This is an indication that the virtual structures pro-
duced by the algorithms cannot be readily used to achieve
scalable reliable multicast protocols. In a scalable protocol,
the number of clusters needs to be kept at a small constant.
This means, we may need to relax the other parameters, e.g.,
cluster radius, cluster size.
� cluster size: since bothLorax andSelf-adjusthave control
over the maximum cluster size, the cluster sizes for these al-
gorithms are kept at a constant 7. On the other hand, the clus-
ter size produced byk-degreefluctuates between 10 and 20.
Looking at the result ofk-degree, there is no clear trend of
increased cluster size as the number of MANs increases. In-
stead, the clusters formed depend highly on the node degree
(topology-dependent). For input graphs with the same number
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Fig. 1. The number of clusters with respect to graphsG1 toG11.
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Fig. 2. Maximum cluster radius with respect to graphsG1 toG11.

of MANs, the graphs with a higher number of LANs per MAN
produce clusters of larger size, which is what we expected.
� cluster radius: In Fig. 2, we compare the maximum clus-
ter radius produced by the algorithms. On the horizontal axis
are the input graphsG1 to G11, whereG1 has the smallest
number of MANs andG11 the largest number of MANs. The
vertical axis is used to record cluster radius. These are the
average of maximum cluster radii over all runs. UsingLo-
rax, the cluster radius increases as the number of MANs in-
creases. Usingk-degree, the cluster radius fluctuates because
the clusters produced are highly degree-dependent (topology-
dependent). For theSelf-adjustalgorithm, the cluster radius
increases slightly as the number of MANs increases. When the
number of MANs reached a certain number (approximately.
50), the cluster radius becomes constant.
� optimality : Self-adjuststrives to preserve topology, and un-
der the ideal conditions of the simulation, all cluster leaders
were ancestors of their respective members. Thek-degreeal-
gorithm does not even assume an underlying multicast routing
tree, so optimality has no meaning here. ForLorax, Fig. 3
shows that the number of non-optimal nodes increases more
than linearly as the number of MANs increases. This could
affect the reliable multicast protocol unfavorably in terms of
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transmission delays and the locality of retransmissions.
The simulation result is produced from 11 runs ofk-degree

(one per graph), 9,990 runs ofLorax (one per node, as root,
for each graph) and 9,990 runs ofSelf-adjust.

VI. CONCLUSION

From the simulation runs, we observed a clear trade-off be-
tween the number of clusters and cluster size, as we expected.
To achieve optimality, we motivate the use of topology pre-
serving clustering algorithms. Thek-degreealgorithm is good
for producing a smaller number of clusters, but the cluster
size is larger.Self-adjustis good for producing small-sized
clusters, but it produces a larger number of clusters. From
the stand-point of scalability, we suggest that future cluster-
ing algorithms should strike a good balance between cluster
number and cluster size, and use a multi-level hierarchy so
that acknowledgments can be gathered within each cluster and
level by level. In our simulation, we had only tried one set
of parameters because we want to evaluate the cluster struc-
tures produced by the different algorithms under similar con-
straints. We need to simulate the algorithms more extensively
using other parameter values.

As future work, we propose to prove the optimality of the
Self-adjustalgorithm, and to study the optimization of differ-
ent parameters while considering network protocol design cri-
teria. The criteria might vary depending on the network appli-
cations. In our simulation, we assumed no loss and the same
delay on all the links. In the future, we need to consider more
realistic assumptions, dynamically changing multicast groups,
and the dynamic update of the virtual structures produced by
clustering algorithms. We also need to incorporate these vir-
tual structures into existing reliable multicast protocols to test
their effects on the protocols.
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